
Характеристики флексографской печати

- Эластичная печатная форма
- Упрощённая красочная система
- Наличие принудительной сушки
- Среднее давление в печатном процессе

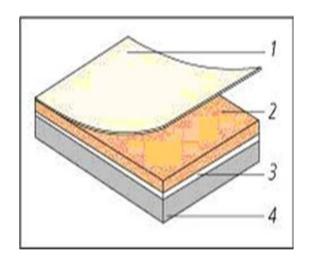
Печатная секция флексографской печати

Технологии изготовления форм

Характеристики пластин

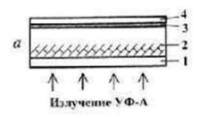
Пластины выпускаются толщиной от 0,76 до 6,35 мм.

Толщина подложки тонких пластин составляет 0,18 мм, толстых - 0,13 мм.


Выбор толщины формной пластины зависит от характера запечатываемого материала. Пластины толщиной до 3,0 мм применяют для запечатывания гладких упаковочных материалов с глубиной рельефа на печатной форме 0,58-0,8 мм. Пластины толщиной более 3,0 мм используют для запечатывания шероховатых поверхностей

Характеристики пластин

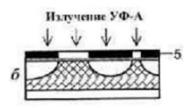
Фотополимеризующиеся пластины могут иметь твердость от 25 до 75 единиц Шора.

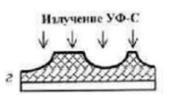

Выбор твердости пластины и, следовательно, печатной формы зависит от характера запечатываемого материала и воспроизводимого изображения. В частности, для запечатывания гладких материалов используют пластины средней и высокой твердости.

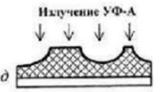
Структура фотополимерной пластины

1- защитный слой; 2- жидкий светочувствительн ЫЙ фотополимерный копировальный слой; 3- адгезионный подслой; 4- полимерная подложка.

Негативное копирование

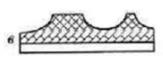

1 — подложка;


2 — фотополимеризуемый слой;


3 — покровный слой;

4 — защитная пленка;

5 — фотоформа


 а — экспонирование оборотной стороны пластины;

б — основное экспонирование;

 в — форма после вымывания и сушки;

е — финишинг;

 дополнительное экспонирование

Требования к негативам

- минимальная плотность негатива должна быть меньше 0,05, а максимальная больше 4,0
- минимальная толщина отдельно стоящих линий — 0,1 мм;
- минимальный диаметр отдельно стоящих точек — 0,2 мм;
- растровые точки в высоких светах не менее
- 3 % при линиатуре растра на форме 48—54 лин./см.

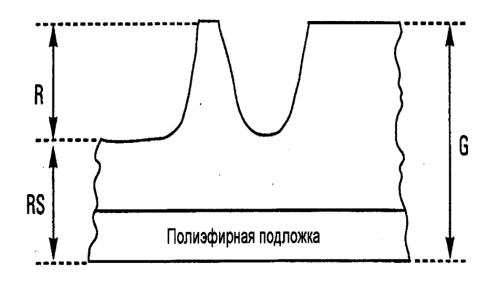
Физико-химическая

обработка пластины

		IIRA IIIIAI IIIABI						
Техноло гический процесс	Параметры процесса	Используемый растворитель						
		Perchlor	Optisol	Flexosol	Unisol	Intersol NW	Nylosolv	Solvit QD
Проявле ние форм	Время, мин Температура , °C	3-7 20-25	7-15 34-35	5-12 28-32	4-7 20-24	5-15 20-30	5-15 20-30	6-10 20-30
Сушка форм	Время, ч Температура , °C	1,5-2,0 60-70	2 60-80	3 60-80	3 и более 60-80	- 60-80	2-3 60-80	1-2 60-80
Регенера ция раствори теля	Давление, Температур a, °C	атмосф. 140-160	вакуум до 250	вакуум до 250	вакуум до 250	вакуум до 250	вакуум до 250	вакуу м до 250

Водовымывная технология

Известные производители — MacDermid и Toyobo.

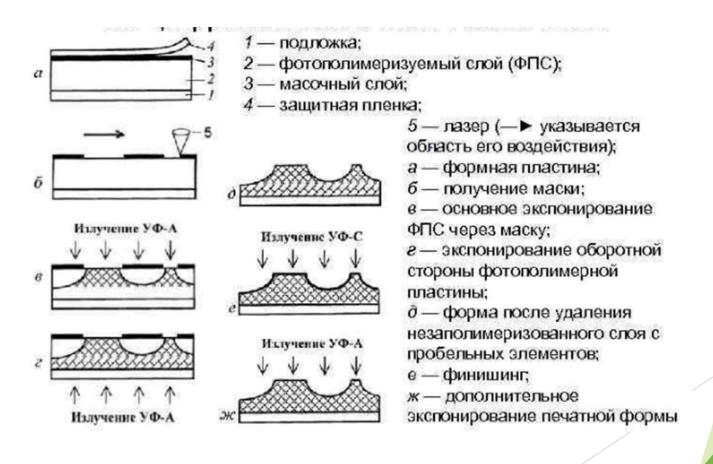

Два главных преимущества— снижение нагрузки на окружающую среду и ускоренная обработка за счёт быстрого высыхания формы, улучшенный краскоперенос, повышающий оптическую плотность плашек, высокая тиражестойкость.

На начальном этапе распространению водовымывных пластин препятствовала ограниченная совместимость с красками и низкое разрешение. Воспроизведения растровых элементов в диапазоне 3-95% при разрешении 48 лин/см. Разрешение стало выше, улучшилась совместимость с красками.

Технология тепловой обработки

- Фотополимер, нагреваясь до 700 °С, переходит в жидкое состояние и удаляется специальным нетканым материалом. Рулон этой ткани находится внутри процессора и постепенно разматывается, снимая 0,7-0,8 мм фотополимера за один цикл. Ткань может использоваться только один раз. В роле 300 метров, которых хватает на 20 форм.
- Благодаря отсутствию вымывания, нет набухание формы. Их поверхность получается достаточно гладкой. Также достигается одинаковая высота растровых и плашечных элементов

Поперечное сечение формы


G = Общая толщина

R = Глубина рельефа RS = Цоколь рельефа

Цифровые технологии

- Запись маски на поверхности пластины с помощью лазера
- Прямая лазерная запись печатной формы

Косвенная лазерная запись форм

Фотополимерные цилиндрические формы

Цилиндрические формы (рукавные, реже бес стыковые — пластинчатые со спаянными краями) изготавливаются на фотополимерном материале с масочным слоем. Этот материал размещен на гильзе и, как правило, предварительно подвергается экспонированию с оборотной стороны (эта операция проводится при его изготовлении).

Изготовление цилиндрической формы

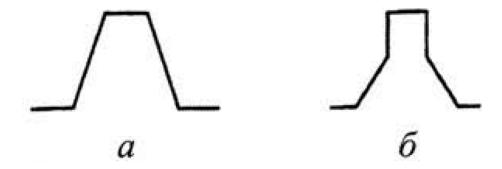
- Предварительное экспонирование оборотной стороны пластины;
- монтаж пластины на гильзе с помощью липкой ленты;
- установка гильзы в сменный держатель экспонирующего устройства;
- воздействие лазером на масочный слой фотополимеризуемой формной пластины;
- экспонирование фотополимеризуемого слоя УФ-Аизлучением;
- вымывание;
- сушка;
- **ф**инишинг;
- дополнительное экспонирование.

Преимущества технологии

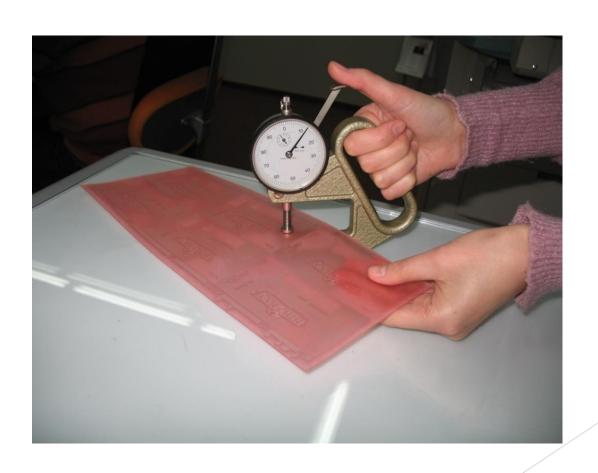
Отсутствуют проблемы, возникающие вследствие неплотного прижима фотоформ в вакуумной камере и образования пузырей при экспонировании фотополимерных пластин;

не существует потери качества, вызванного попаданием пыли или других включений между фотоформой и пластиной;

не происходит искажения формы печатающих элементов изза низкой оптической плотности фотоформ;


отсутствует необходимость работы с вакуумом;

профиль печатающего элемента оптимален для стабилизации растискивания и точной цветопередачи.


Полимерные цилиндрические формы

- Это цилиндрические бесшовные гильзы, реже бесстыковые пластинчатые. Изготавливаются они в одну стадию.
- После контроля и выбора режимов гравирования непосредственно осуществляется формирование пробельных элементов.

Профили печатающих элементов

Измерение рельефа печатной формы

Основные характеристики готовых форм

- Способность к восприятию краски и краскопереносу;
- стойкость к действию растворителей печатных красок;
- твердость;
- однородность по толщине;
- износостойкость.